f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xsc

NAG C Library Function Document

nag zhgeqz (f08xsc)

1 Purpose

nag_zhgeqz (f08xsc) implements the (QZ method for finding generalized eigenvalues of the complex
matrix pair (A, B) of order n, which is in the generalized upper Hessenberg form.

2 Specification

void nag_zhgeqz (Nag_OrderType order, Nag_JobType job, Nag_ComputeQType compq,
Nag_ComputeZType compz, Integer n, Integer ilo, Integer ihi, Complex al[],
Integer pda, Complex b[], Integer pdb, Complex alpha[], Complex beta[],
Complex q[], Integer pdq, Complex z[], Integer pdz, NagError *fail)

3 Description

nag zhgeqz (f08xsc) implements a single-shift version of the ()Z method for finding the generalized
eigenvalues of the complex matrix pair (A, B) which is in the generalized upper Hessenberg form. If the
matrix pair (A4, B) is not in the generalized upper Hessenberg form, then the function nag zgghrd (f08wsc)
should be called before invoking nag zhgeqz (f08xsc).

This problem is mathematically equivalent to solving the matrix equation

det(A — AB) = 0.
Note that, to avoid underflow, overflow and other arithmetic problems, the generalized eigenvalues \; are
never computed explicitly by this function but defined as ratios between two computed values, «; and (3;:

The parameters v, in general, are finite complex values and (3; are finite real non-negative values.

If desired, the matrix pair (A, B) may be reduced to generalized Schur form. That is, the transformed
matrices A and B are upper triangular and the diagonal values of A and B provide « and (.

The parameter job specifies two options. If job = Nag Schur then the matrix pair (A, B) is
simultaneously reduced to Schur form by applying one unitary transformation (usually called @) on the left
and another (usually called Z) on the right. That is,

A—Q"Az
B—Q"Bz

If job = Nag_EigVals then at each iteration the same transformations are computed but they are only
applied to those parts of A and B which are needed to compute « and 3. This option could be used if
generalized eigenvalues are required but not generalized eigenvectors.

If job = Nag_Schur and compq and compz are Nag_ AccumulateZ or Nag InitZ then the unitary
transformations used to reduce the pair (A, B) are accumulated into the input arrays q and z. If
generalized eigenvectors are required then job must be set to Nag Schur and if left (right) generalized
eigenvectors are to be computed then compq (compz) must be set to Nag AccumulateZ or Nag InitZ
rather than Nag NotZ.

If compq is set to Nag_InitQ, then eigenvectors are accumulated on the identity matrix and on exit the
array q contains the left eigenvector matrix). However, if compq is set to Nag_AccumulateQ then the
transformations are accumulated in the user-supplied matrix @), in array q on entry and thus on exit q
contains the matrix product Q@),. A similar convention is used for compz.

[NP3645/7] f08xsc. 1

f08xsc

4

NAG C Library Manual

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Moler

C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.

Anal. 10 241-256

Golub

G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,

Baltimore

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5

1:

f08xsc.

Parameters

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

job — Nag JobType Input
On entry: specifies the operations to be performed on (A, B):

if job = Nag_EigVals, the matrix pair (A, B) on exit might not be in the generalized Schur
form;

if job = Nag_Schur, the matrix pair (A, B) on exit will be in the generalized Schur form.
Constraint. job = Nag_EigVals or Nag_Schur.

compq — Nag ComputeQType Input
On entry: specifies the operations to be performed on Q:

if compq = Nag _NotQ, the array q is unchanged;

if compq = Nag_AccumulateQ, the left transformation @) is accumulated on the array q;

if compq = Nag_InitQ, the array q is initialised to the identity matrix before the left
transformation (@) is accumulated in q.

Constraint: compq = Nag_NotQ, Nag_AccumulateQ or Nag_InitQ.

compz — Nag_ComputeZType Input
On entry: specifies the operations to be performed on Z:

if compz = Nag NotZ, the array z is unchanged;

if compz = Nag_AccumulateZ, the right transformation 7 is accumulated on the array z;

if compz = Nag_InitZ, the array z is initialised to the identity matrix before the right
transformation Z is accumulated in z.

Constraint: compz = Nag _NotZ, Nag_AccumulateZ or Nag InitZ.

n — Integer Input
On entry: n, the order of the matrices A, B, () and Z.

Constraint: n > 0.

2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xsc

10:

11:

12:

13:

ilo — Integer Input
ihi — Integer Input

On entry: the indices 4;, and i;;, respectively which defines the upper triangular parts of A. The
submatrices A(1 :4;, —1,1:4;, — 1) and A(iy; + 1 : n,iy; + 1 : n) are then upper triangular. These
parameters are provided by nag zggbal (f08wvc) if the matrix pair was previously balanced;
otherwise, ilo = 1 and ihi = n.

Constraints:

if n >0, 1 <ilo <ihi <n;

if n =0, ilo = 1 and ihi = 0.
a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: the n by n upper Hessenberg matrix A. The elements below the first subdiagonal must be
set to zero. If job = Nag Schur, the matrix pair (A, B) will be simultaneously reduced to
generalized Schur form. If job = Nag_EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix
pair (A, B) will give generalized eigenvalues but the remaining elements will be irrelevant.

pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint. pda > max(1,n).

b[dim] — Complex Input/Output
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by n upper triangular matrix B. The elements below the diagonal must be zero.

On exit: if job = Nag_Schur, the matrix pair (A, B) will be simultaneously reduced to generalized
Schur form. If job = Nag_EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair (A, B)
will give generalized eigenvalues but the remaining elements will be irrelevant.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

alpha|dim] — Complex Output
Note: the dimension, dim, of the array alpha must be at least max(1,n).

On exit: ay, for j=1,...,n.

beta[dim| — Complex Output

Note: the dimension, dim, of the array beta must be at least max(1,n).

On exit: 3;, for j=1,...,n.

[NP3645/7] f08xsc.3

f08xsc NAG C Library Manual

14:

16:

17:

18:

q[dim] — Complex Input/Output

Note: the dimension, dim, of the array q must be at least
max(1, pdq x n) when compq = Nag_AccumulateQ or Nag_ InitQ;
1 when compq = Nag_NotQ.

If order = Nag_ColMajor, the (7,j)th element of the matrix @ is stored in q[(j — 1) x pdq + ¢ — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q[(i — 1) x pdq + j — 1].

On entry: if compq = Nag_AccumulateQ, the matrix (), is usually the matrix @ returned by
nag_zgehrd (f08nsc).

If compq = Nag_NotQ, q is not referenced.

On exit: If compq = Nag AccumulateQ, q contains the matrix product QQ,; if
compq = Nag InitQ, q contains the transformation matrix Q.

pdq — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:

if order = Nag_ColMajor,
if compq = Nag_AccumulateQ or Nag_InitQ, pdq > n;
if compq = Nag_NotQ, pdq > 1;

if order = Nag_RowMajor,
if compq = Nag_AccumulateQ or Nag InitQ, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.
z[dim] — Complex Input/Output

Note: the dimension, dim, of the array z must be at least
max (1, pdz x n) when compz = Nag_AccumulateZ or Nag_InitZ;
1 when compz = Nag_NotZ.

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On entry: if compz = Nag_AccumulateZ, the matrix Z,. Usually, Z is the matrix Z returned by
nag zgghrd (f08wsc). If compz = Nag_NotZ, z is not referenced.

On exit: if compz = Nag AccumulateZ, z contains the matrix product 27, if
compz = Nag_InitZ, z contains the transformation matrix 7.
pdz — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if order = Nag_ColMajor,
if compz = Nag_AccumulateZ or Nag_InitZ, pdz > n;
if compz = Nag NotZ, pdz > 1;

if order = Nag_RowMajor,
if compz = Nag_AccumulateZ or Nag_InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08xsc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xsc

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

On entry, pdz = (value).
Constraint: pdz > 0.
NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).
NE_INT 3
On entry, n = (value), ilo = (value), ihi = (value).
Constraint: if n > 0, 1 <ilo < ihi < n;
if n =0, ilo = 1 and ihi = 0.
NE_ENUM_INT 2

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_AccumulateQ or Nag_InitQ, pdq > n;
if compq = Nag NotQ, pdq > 1.

On entry, compz = (value), n = (value), pdz = (value).
Constraint: if compz = Nag_AccumulateZ or Nag_InitZ, pdz > n;
if compz = Nag NotZ, pdz > 1.

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_AccumulateQ or Nag InitQ, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

On entry, compz = (value), n = (value), pdz = (value).
Constraint: if compz = Nag AccumulateZ or Nag InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.

NE_CONVERGENCE

The QZ iteration did not converge and the matrix pair (A4, B) is not in the generalized Schur form.
The computed «; and §; should be correct for i = (value), ..., (value).

The Q7 iteration did not converge and the matrix pair (A, B) is not in the generalized Schur form.

The computation of shifts failed and the matrix pair (A, B) is not in the generalized Schur form.
The computed «; and f; should be correct for i = (value), ..., (value).

The computation of shifts failed and the matrix pair (A, B) is not in the generalized Schur form.

An unexpected Library error has occurred.

[NP3645/7] f08xsc.5

f08xsc NAG C Library Manual

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Please consult section 4.11 of the LAPACK Users’ Guide (Anderson et al. (1999)) and Chapter 6 of
Stewart and Sun (1990), for more information.

8 Further Comments

nag zhgeqz (f08xsc) is the fifth step in the solution of the complex generalized eigenvalue problem and is
called after nag_zgghrd (fO8wsc).

The number of floating-point operations taken by this function is proportional to n’.

The real analogue of this function is nag_dhgeqz (f08xec).

9 Example

The example program computes the o and (5 parameters, which defines the generalized eigenvalues, of the
matrix pair (A, B) given by

1.0+3.06 1.0+4.0; 1.0+45.0¢ 1.0+ 6.0¢
20+2.0; 40+3.0; 80+4.0; 16.0+5.0¢

A= 30+1.00 9.0+42.00 27.04+3.00 81.0+4.0¢
40400 16.0+1.0c 64.0+2.0¢ 256.0+3.0¢
1.0+0.06 2.0+1.0: 3.0+42.0s 4.0 +3.0¢

B 1.0+1.00 404200 9.0+43.00 16.0+4.0¢

1.042.00 80+3.00 27.0+4.00 64.0+5.0¢
1.043.0¢ 16.0+4.0¢ 81.0+5.0¢ 256.0+ 6.0¢

This requires calls to five functions: nag_zggbal (f08wvc) to balance the matrix, nag_zgeqrf (f08asc) to
perform the QR factorization of B, nag_zunmqr (f08auc) to apply @ to A, nag_zgghrd (f08wsc) to reduce
the matrix pair to the generalized Hessenberg form and nag zhgeqz (f08xsc) to compute the eigenvalues
via the QQZ algorithm.

9.1 Program Text

/* nag_zhgeqz (f08xsc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)

f08xsc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xsc

/* Scalars *x/

Integer i, ihi, ilo, irows, j, n, pda, pdb;
Integer alpha_len, beta_len, scale_len, tau_len;
Integer exit_status=0;

NagError fail;

Nag_OrderType order;

/* Arrays */

Complex *a=0, *alpha=0, *b=0, *beta=0, *g=0, *tau=0, #*z=0;
Complex e;

double *1lscale=0, *rscale=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f08xsc Example Program Results\n\n")
/* Skip heading in data file */
Vscanf ("%* [\n ") ;
Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;

pdb = n;
#else

pda = n;

pdb = n;
#endif

alpha_len = n;
beta_len = n;
scale_len = n;
tau_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
alpha = NAG_ALLOC (alpha_len, Complex)) ||
b = NAG_ALLOC(n * n, Complex)) ||
beta = NAG_ALLOC (beta_len, Complex)) ||

= NAG_ALLOC(1 * 1, Complex)) ||
tau = NAG_ALLOC(tau_len, Complex)) ||
lscale = NAG_ALLOC(scale_len, double)) ||
rscale = NAG_ALLOC(scale_len, double)) ||

1(
1(
1(
' (g
t(
1(
¢
1 (z = NAG_ALLOC(1 * 1, Complex)))

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;
}
/* READ matrix A from data file */
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f, %1f) ", &A(i,j).re, &A(i,J).im);
}
Vscanf ([*\n] ");

/* READ matrix B from data file */

for (i = 1; i <= n; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f, %1f) ", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ([*\n] ");

[NP3645/7] f08xsc.7

f08xsc NAG C Library Manual

/* Balance matrix pair (A,B) */
fO08wvc (order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, 1lscale,
rscale, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08wvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Matrix A after balancing =*/

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
Nag_BracketForm, "%7.4f", "Matrix A after balancing",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\n") ;

/* Matrix B after balancing */

x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
Nag_BracketForm, "%7.4f", "Matrix B after balancing",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\n") ;

/* Reduce B to triangular form using QR */

irows = ihi + 1 - ilo;
fO8asc(order, irows, irows, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8asc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Apply the orthogonal transformation to matrix A =*/
fO8auc(order, Nag_LeftSide, Nag_ConjTrans, irows, irows, irows,
&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8auc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute the generalized Hessenberg form of (A,B) */
fO08wsc(order, Nag_NotQ, Nag_NotZz, irows, 1, irows, &A(ilo, ilo),
pda, &B(ilo, ilo), pdb, gq, 1, z, 1, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08wsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Matrix A in generalized Hessenberg form */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
Nag_BracketForm, "%7.3f", "Matrix A in Hessenberg form",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf ("Error from x04dbc.\n%s\n", fail.message);

f08xsc.8 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xsc

exit_status = 1;
goto END;
}
Vprintf ("\n") ;
/* Matrix B in generalized Hessenberg form */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
Nag_BracketForm, "%7.3f", "Matrix B is triangular",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the generalized Schur form =*/
f08xsc(order, Nag_EigVals, Nag _NotQ, Nag_NotZ, n, ilo, ihi, a,
pda, b, pdb, alpha, beta, g, 1, z, 1, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08xsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the generalized eigenvalues */
Vprintf ("\n Generalized eigenvalues\n");
for (i = 0; 1 < n; ++1)

{
if (betal[i].re != 0.0 || betal[i].im != 0.0)
{
e = al2cdc(alphali], betalil);
Vprintf (" %414 (%$7.3f,%7.3f)\n", i+l, e.re, e.im);
¥
else
Vprintf (" %41d Infinite eigenvalue\n", i+1l);
}
END:
if (a) NAG_FREE (a);
if (alpha) NAG_FREE (alpha);
if (b) NAG_FREE (b);
if (beta) NAG_FREE (beta);
if (lscale) NAG_FREE(lscale);
if (g) NAG_FREE(q);
if (rscale) NAG_FREE(rscale);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08xsc Example Program Data

A~~~ o~~~ o~ —~

4 :Value of N
1.00, 3.00) (1.00, 4.00) (1.00, 5.00) (1.00, 6.00)

2.00, 2.00) (4.00, 3.00) (8.00, 4.00) (16.00, 5.00)

3.00, 1.00) (9.00, 2.00) (27.00, 3.00) (81.00, 4.00)

4.00, 0.00) (16.00, 1.00) (64.00, 2.00) (256.00, 3.00) :End of matrix A
1.00, 0.00) (2.00, 1.00) (3.00, 2.00) (4.00, 3.00)

1.00, 1.00) (4.00, 2.00) (9.00, 3.00) (16.00, 4.00)

1.00, 2.00) (8.00, 3.00) (27.00, 4.00) (64.00, 5.00)

1.00, 3.00) (16.00, 4.00) (81.00, 5.00) (256.00, 6.00) :End of matrix B

[NP3645/7] Sf08xsc.9

f08xsc NAG C Library Manual

9.3 Program Results

f08xsc Example Program Results

Matrix A after balancing

1 2 3 4
1 (1.0000, 3.0000) (1.0000, 4.0000) (0.1000, 0.5000) (0.1000, 0.6000)
2 (2.0000, 2.0000) (4.0000, 3.0000) (0.8000, 0.4000) (1.6000, 0.5000)
3 (0.3000, 0.1000) (0.9000, 0.2000) (0.2700, 0.0300) (0.8100, 0.0400)
4 (0.4000, 0.0000) (1.6000, 0.1000) (0.6400, 0.0200) (2.5600, 0.0300)
Matrix B after balancing

1 2 3 4
1 (1.0000, 0.0000) (2.0000, 1.0000) (0.3000, 0.2000) (0.4000, 0.3000)
2 (1.0000, 1.0000) (4.0000, 2.0000) (0.9000, 0.3000) (1.6000, 0.4000)
3 (0.1000, 0.2000) (0.8000, 0.3000) (0.2700, 0.0400) (0.6400, 0.0500)
4 (0.1000, 0.3000) (1.6000, 0.4000) (0.8100, 0.0500) (2.5600, 0.0600)
Matrix A in Hessenberg form

1 2 3 4
1 (-2.868, -1.595) (-0.809, -0.328) (-4.900, -0.987) (-0.048, 1.163)
2 (-2.672, 0.595) (-0.790, 0.049) (-4.955, -0.163) (-0.439, -0.574)
3 (0.000, 0.000) (-0.098, -0.011) (-1.16e8, -0.137) (-1.756, -0.205)
4 (0.000, 0.000) (0.000, 0.000) (0.087, 0.004) (0.032, 0.001)

1 2 3 4
i1 (-1.775, 0.000) (-0.721, 0.043) (-5.021, 1.190) (-0.145, 0.726)
2 (0.000, 0.000) (-0.218, 0.035) (-2.541, -0.140) (-0.823, -0.418)
3 (0.000, 0.000) (0.000, 0.000) (-1.396, -0.163) (-1.747, -0.204)
4 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (-0.100, -0.004)
Generalized eigenvalues
1 (-0.635, 1.653)
2 (0.493, 0.910)
3 (0.674, -0.050)
4 (0.458, -0.843)

f08xsc.10 (last) [NP3645/7]

	f08xsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compq
	compz
	n
	ilo
	ihi
	a
	pda
	b
	pdb
	alpha
	beta
	q
	pdq
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

